Notes

Oxidation of α -Amino Acids and α -Hydroxy Acids by Fremy's Salt. A Model for Oxidases?

Angel Garcia-Raso, Pedro M. Deya, and José M. Saa^{*}

Departament de Qulmica, Universitat de les Illes Balears, Palma de Mallorca 07071, Spain

Received June 25, 1986

Enzymatic dehydrogenation of biological substrates such as α -amino and α -hydroxy acids by flavoenzymes has attracted considerable attention in recent years. In fact, the search for a precise understanding of the mechanism for these and other flavoenzyme-controlled biological redox reactions has led to a lively debate and controversy.'

On the other hand, all attempts to mimic the flavincatalyzed oxidation of α -amino acids to the corresponding α -keto acids,² by nonenzymatic means, have invariably produced the corresponding nor-aldehydes (oxidative decarboxylation).³ Oxidative decarboxylation is also a main route in the chemical oxidation of α -hydroxy acids.⁴ In spite of this, oxidative methods for the preparation of α -keto acids and derivatives have been developed, which avoid or at least reduce the magnitude of the undesirable $decarboxylation.⁵$

As part of a research program directed to fully evaluate the oxidizing power of a well-known one-electron oxidant such as Fremy's salt $(F.S.)$, θ we report here recent findings on the F.S. oxidation of some α -amino and α -hydroxy acids to the corresponding α -keto acids.² To the best of our knowledge, this represents the first succesful nonenzymatic attempt to mimic the action of flavoproteins in generating α -keto acids from these important biological substrates.

Recent work⁷ from our laboratories has led us to view F.S. as a smooth oxidant capable of generating radicals stabilized by captodative substituents⁸ which further react with F.S.,⁹ thus yielding oxidized substrates (Scheme I).

According to this general scheme, it seemed to us that α -amino and α -hydroxy acids should be ideal substrates for oxidation with F.S. since they should give rise, under appropriate conditions, to the corresponding α -carbon radicals.¹⁰ These, according to Viehe et al.⁸ are stabilized radicals due to the synergistic effect of capto dative substituents.

Following this rationale, we decided to submit typical α -amino 1 and α -hydroxy acids 2 to the action of F.S. We expected that the α -carbon radical, if generated, would combine with excess F.S. giving rise to intermediate **3** (Scheme 11). Furthermore, at the outset of the work, two possible outcomes were envisioned, leading to either net

⁽¹⁾ For some recent reviews on the subject, see: Walsh, C. **Acc.** *Chem.* Res. **1980,13,148.** Bruice, T. C. **Acc.** *Chem.* Res. **1980,13,256.** Muller, F. Topics in Current Chemistry **108:** Radicals in Biochemistry; Boschke, F. L., Ed.; Springer Verlag: Berlin, **1983;** pp **71-107.** Edmonson, D. E.; Tollin, G., ibid, pp **111-138. (2)** Cooper, A. J. L.; Ginos, J. Z.; Meister, A. *Chem. Reu.* **1983,83,321.**

⁽³⁾ Methoden der Organischen *Chemie* (Houben- Weyl), Georg Thieme Verlag: Stuttgart, 1983; Bd. E-3, p 533. See also: Hampson, N.
A.; Lee, J. B.; Morley, J. R.; Scanlon, B. *J. Chem. Soc. C* 1970, 815.
Barakat, M. Z.; Abdel Wahab, M. F.; El-Sadr, M. M. *J. Chem. Soc. C*
1956, 4685. **C 1966, 1388.**

⁽⁴⁾ Methoden der Organischen *Chemie* (Houben- Weyl), Georg Thieme Verlag: Stuttgart, **1983;** Bd. **E-3,** p **527.** See also: Pocker, Y.; Davis, B. C. J. Am. *Chem. SOC.* **1973,93, 6216.** Barakat, M. **Z.;** Abdel Wahab, M. F.; El-Sadr, M. M. *J. Chem. SOC.* **C 1956,4685.** Toussaint,

Wanao, M. Y. H. H. B. Salin, W. N. Tetrahedron Lett. 1984, 25, 3819.

(5) Gapdevielle, P.; Mansuy, M. Tetrahedron Lett. 1984, 25, 3819.

(5) Baer, E.; Kates, M. J. Am. Chem. Soc. 1945, 67, 1482. Hassan, F.; Roceck, J. J. A

⁽⁹⁾ Analogous trapping techniques have been used. See, for example:
Moriya, F.; Makino, K.; Suzuki, I. R. K.; Rokushika, S.; Hatano, H. J. Am.
Chem. Soc. 1982, 104, 830. Turro, N. J.; Zimmt, M. B.; Gould, I. R. J.
Am. Chem

⁽¹⁰⁾ These **as** well **as** a-aminocarboxamido and a-aminocyano radicals have been detected. See ref 8, **as** well as: Poupko, R.; Loewenstein, A.; Silver, B. L. J. **Am.** *Chem. SOC.* **1971,93,580.** Kleyer, D. L.; Haltiwanger, R. C.; Koch, T. H. *J. Org. Chem.* **1983,48,147.** De Vries, L. *J.* **Am.** *Chem. SOC.* **1978, 100, 926.**

Table **I.** Fremy's Salt Oxidation **of** a-Amino 1 and a-Hydroxy Acids **²**

	substrate RCH(XH)COOH		time	product RC(O)COOH ^a	yield	mp of $2,4-DNP$
entry			(h)	ĸ	$(\%)$	$({}^{\circ}C)^b$
	н	NH	20	н	$0 - 22c$	$200 - 202$
	CH ₂	NH	30	CH,	37	$214 - 216$
	$(CH_3)_2CH$	NΗ	24	$(CH_3)_2CH$	40	195-196
	$CH_3CH_2CH(CH_3)$	NH	60	$CH_3CH_2CH(CH_3)$	47	$167 - 169$
	HOOCCH ₂ CH ₂	NH	24	HOOCCH ₂ CH	21	$217 - 219$
	Ph	NH	60	Ph	82	190-192
	н	PhCONH	240	$N.R.^d$	83 ^e	
	CH ₃	PhCONH	96	$N.R.^d$	78 ^e	
	CH ₃		65	CH ₃	32	$214 - 216$
10	Ph		168	Ph.	83	190-192

Isolated and characterized as **(2,4-dinitrophenyl)hydrazones.** * DNP = **(dinitropheny1)hydrazone.** Melting points were found to be identical with those indicated in ref 2. ^{*c*} This reaction has proved to be capricious, perhaps due to further oxidation of glyoxylic acid. ^{*d*} N.R. = no reaction. **e** Recovered starting material.

dehydrogenation and/or oxidative decarboxylation (paths a and b, respectively, Scheme 11).

Oxidation of α -amino 1 and α -hydroxy acids 2 (1 mmol). in a buffered (pH 10) aqueous solution, with an excess of F.S. **(3** mmol), at room temperature, for several hours (see Table I), led only to the corresponding α -keto acids in moderate yield (isolated as the corresponding (2,4-dinitropheny1)hydrazones) (Table I). Most important of all, no degradation products from oxidative decarboxylation (path b, Scheme 11) were detected (13C NMR monitoring).

¹³C NMR monitoring of several reactions revealed that the final α -keto acids exist in the reaction mixture, in part as enolates (Ile, Val) and/or aldol oligomers¹¹ (Ala, lactic acid). This together with the fact that enolates undergo slow oxidation by F.S. (vide infra) allow for a simple explanation of the low yields of α -keto acids obtained. Thus, only in those cases where enolization is not posible (phenylglycine, mandelic acid) the corresponding α -keto acid (detected by I3C NMR at very short reaction times) was customarily obtained in 80-82% yield (entries 6 and 10, Table I). On the other hand α -keto acids having just one @-hydrogen were slowly oxidized by F.S. Thus, Val and its corresponding α -keto acid (α -ketoisovaleric acid) when allowed to react with a large excess of F.S. under the usual conditions (see Experimental Section); followed by treatment with **2,4-dinitrophenylhydrazine** in strong acid (10 N HC1) yielded triazoline **6** (41% and 58% yield, respectively). Similarly triazoline **7** was obtained in **38%** from Ile (Scheme III). Finally F.S. oxidation of α -keto acids with more than one β -hydrogen (phenylpyruvic acid) gives rise to complex mixtures which were not further studied.

From **a** mechanistic point of view several observations are worthy of note. First is the high recovery (80%) of starting material (entries **7** and 8) where the electron pair of the amino group is delocalized over the neighboring amide carbonyl.¹² Second is that the optimized conditions (see Table 11) for the oxidation of 1 require operation at a pH close to the pK_2 of α -amino acids (pH 9-10). Since the redox potential13 of F.S. at this pH value is **+0.24** V (vs. SCE), the above observations tentatively suggest that the first step for the oxidation of α -amino acids might be that of the generation of the corresponding amminium radicals,¹⁴ followed by the loss of the α -carbon proton, thus

Table **11.** Fremy's Salt Oxidation **of** Alanine **to** Pyruvic Acid. DH Dependence

. .					
	pH	yield ^{a} (%)			
	6.0				
	7.2				
	8.1				
	9.0	$\frac{20}{37}$			
	10.0				

"Reaction time: **24** h.

providing a stabilized α -carbon radical.¹⁰ Further combination of this radical¹⁵ with excess F.S. leads to intermediate **3** which eliminates hydroxylamino disulfonate yielding the final α -keto acids 5, via the easily hydrolizable α -imino acids¹⁶ 4.

In contrast to that observed with α -amino acids, F.S. oxidation of α -hydroxy acids 2 takes place at pH 6^{17} (PhCHOHCOOH \rightarrow PhCOCOOH, 80%, 48 h) more rapidly than at pH 10 (entry 10, Table I) in line with its higher redox potential at pH 6.¹³ Both this observation and the higher oxidation potential associated with oxygen vs. nitrogen compounds suggest that F.S. oxidizes α -hydroxy acids 2 directly¹⁸ to the corresponding α -carbon radical,¹⁹ which, **as** shown in Scheme 11, provides *5* via intermediate **3.**

In summary, Fremy's salt, which might be viewed as a very simple mode120 for oxidases, provides a useful alternative to the enzymatic 21 methods for the direct preparation of some α -keto acids from the corresponding α -amino acids.22

⁽¹¹⁾ Waldmann, E.; Prey, V.; Jelinek, F. *Monatsh. Chem.* **1954, 85, 873.**

⁽¹²⁾ For some succesful oxidations of these type of compounds, **see:** Obata, N.; Niimura, **K.** J. *Chem.* Soc., *Chem. Commun.* **1977,238.** Yijima, C.; Himo, F.; Suda, K. *Synthesis* **1981, 610.**

⁽¹³⁾ Balasubramanian, P. N.; Gould, E. S. *Inorg. Chem.* **1983,22,1100** and references therein.

Reu. **1978, 78, 243. (14)** Chow, Y. **L.;** Danen, W. **C.;** Nelsen, S. F.; Rosenblatt, D. H. *Chem.*

⁽¹⁵⁾ α -Amino acid radicals are much stronger reductants than α -hydroxy acid radicals. See: Rao, P. S.; Hayon, E. *J. Am. Chem. SOC.* **1974, 96, 1287.**

⁽¹⁶⁾ See Tamaguchi et al. [Tamaguchi, M.; Saburi, M.; Toshikawa, S. *J. Am. Chem. SOC.* **1984,** *106,* **8293.1** for the oxidative dehydrogenation of cobalt(III) α -amino acidate complexes leading to isolable α -imino acid complexes.

⁽¹⁷⁾ At this pH benzoic acid was detected (GLC) as a minor product. (18) Lactic and amino acid oxidases have been shown to catalyze reactions that involve ionization of the α -CH bond prior to its reaction
with enzyme-bound Fl_{ox} . See ref 1 and Williams, R. F.; Bruice, T. C. J.
Am. Chem. Soc. 1976, 98, 7752.
(19) See: Guengerich, F. P.; McDonald, T

^{17, 9} for a related discussion. **(20) A** Flavin Ns-nitroxyl radical has been proposed **as** a model for the flavin-dependant monooxygenases. See: Wagner, W. R.; Spero, D. M.: Rastetter, W. H. *J. Am. Chem.* **SOC. 1984,** *106,* **i476.**

⁽²¹⁾ Meister, **A.** *Methods Enzymol.* **1957, 3, 404.** method to all natural α -amino acids. However, no doubt exists as its main limitations will derive from the well-known reactivity of the enolates formed, namely, racemization, polymerization, and further oxidation. Fortunately a large number of excellent synthetic protocols leading to a-keto acids are now available (see ref *Z),* and, most important, some of them allow for the preparation of optically active α -keto acids.

Experimental Section

NMR spectra Melting points are uncorrected. 'H **NMR** and were run with a Varian CFT-80 instrument using tetramethylsilane and dioxane **as** internal standard, respectively. Mass spectra were recorded with a Kratos-25 instrument as well as with a HewlettiPackard **5985** B at **70** eV. IR spectra were recorded with a Hitachi **260-10** instrument. Elemental analyses were carried out at the Instituto de Quimica Bioorgánica del C.S.I.C. (Barcelona).

All commercial α -amino acids and α -hydroxy acids were directly used as received. Fremy's salt was prepared, recrystallized, and stored as reported.⁶

Two buffered solutions²³ were used: sodium carbonate buffer (pH **10)** and phosphate buffer (pH **7.2).** The phosphate buffer was then appropriately adjusted to the pH needed by adding **0.2** M NaOH.

Oxidation of a-Amino and a-Hydroxy Acids. General Procedure. To a stirred solution of **1** mmol of **1** or **2** in **12** mL Stirring was continued for the time shown. The resulting solution, after acidification with **2** N HC1, was added to a solution of **2,4-dinitrophenylhydrazine (1.2** mmol) in **25** mL of **12** N HCl, previously filtered. The **(2,4-dinitrophenyl)hydrazones** obtained were recrystallized from ethanol. Their spectroscopic data (IR, NMR, MS) were identical with those of authentic samples.

Preparation of Triazolines 6 and 7. To a stirred solution of Val **(1** mmol) in **12** mL of sodium carbonate buffer (pH **10)** was added a large excess of Fremy's salt **(3** mmol). After **5** days of stirring, a second batch of Fremy's salt **(3** mmol) was added. Stirring was continued for another **5** days. The resulting solution was then treated with a filtered solution of 2,4-dinitrophenylhydrazine **(2.2** mmol) in **50** mL of **12** N HC1. A precipitate slowly appeared $(24 h)$. Filtration and final recrystallization (twice) from ethanol yielded triazoline **6** in **41%** yield as yellow needles, mp **202-203** "C: IR (KBr) **3275,3100,2980,1690,1610,1590,1500,** 1410,1335,1305,1260,1140,1110,1075,915,860,830,740,710 cm-'; 'H NMR (MezSO-d6, Me,Si) **1.60 (6** H, **s), 8.05 (1** H, d, J ⁼**9.4** Hz), **8.47 (1** H, dd, *J* = **9.4** Hz, *J* = **2.5** Hz), **8.95 (1** H, d, $J = 2.5$ Hz), 15.50 (1 H, s) ppm; ¹³C NMR (Me₂SO-d₆, Me₄Si) **25.55, 82.50, 115.60,122.66, 129.69, 129.96, 138.00, 143.80, 149.50, 158.27** ppm; mass spectrum, m/e (relative intensity) **309** (M+, **60), 294 (loo), 273 (lo), 259 (15), 195 (20), 183 (25).** Anal. Calcd for N, **22.37.** $C_{11}H_{11}N_5O_6$: C, 42.72; H, 3.56; N, 22.65. Found: C, 42.64; H, 3.58;

Identical treatment of Ile **(1** mmol) as above yielded triazoline **7** in **38%** yield, as yellow prisms: mp **194-195.5** "C; IR (KBr) **3275,** 3100,2975,1680,1605,1595,1500,1420,1330,1310,1135,1110, Me4Si) **1.00 (3** H, t, *J* = **7.3** Hz), **1.54 (3** H, **s), 1.90 (2** H, **q,** *J* = **7.3** Hz), **8.05 (1** H, d, *J* = **9.6** Hz), **8.38 (1** H, dd, J ⁼**9.6** Hz, J ⁼**2.4** Hz), **9.08 (1** H, d, *J* = **2.4** H), **14.09 (1** H, **s)** ppm; 13C NMR (MezSO-d6, Me4&) **7.38, 23.72,31.93,85.56, 115.57,122.60,130.02, 130.14, 138.29, 143.82, 149.00, 158.22** ppm; mass spectrum, m/e (relative intensity) **323** (M', **19), 294 (lOO), 273 (24), 183 (21).** Anal. Calcd for C₁₂H₁₃N₅O₆: C, 44.59; H, 4.05; N, 21.66. Found: C, **44.66;** H, **3.86;** N, **21.34.** 1090, 1045, 920, 880, 830, 740, 700 cm⁻¹; ¹H NMR (Me₂SO- d_6 ,

Treatment of commercial (Sigma) a-keto isovaleric acid **(1** mmol) with Fremy's salt **(30** mmol) as indicated for Val yielded triazoline **6** in **58%** yield.

Acknowledgment. We thank the Comisión Asesora of Spain (Proyecto No. **1240/81)** for financial support. We are also grateful to the Universidad Autonoma de Barcelona and the Universidad de Santiago de Compostela for kindly recording our mass spectra.

Registry No. 6, 104197-46-8; 7, 104197-47-9; $H_2NCH_2CO_2H$ **,** 56-40-6; $H_2NCH(CH_3)CO_2H$, 56-41-7; $(CH_3)_2CHCH(NH_2)CO_2H$, 72-18-4; $\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)$ CH(NH₂)CO₂H, 73-32-5; **HO**₂CCH₂C- $H_2CH(NH_2)CO_2H$, 56-86-0; $H_2NCH(Ph)CO_2H$, 69-91-0; PhCONHCH2C02H, **495-69-2;** PhCONHCH(CH,)C02H, **2198-** 64-3; CH₃CH(OH)CO₂H, 50-21-5; PhCH(OH)CO₂H, 90-64-2;

OHCCO₂H, 298-12-4; CH₃COCO₂H, 127-17-3; $\text{(CH}_3)_2\text{CHCOCO}_2\text{H}$, 759-05-7; CH₃CH₂CH(CH₃)COCO₂H, 1460-34-0; HO₂CCH₂CH₂-COCOZH, **328-50-7;** PhCOC02H, **611-73-4;** DNP-NHN=CHC-OzH, **3158-42-7;** DNP-NHN=C(CHJCO2H, **790-12-5;** DNP-NH-**1459-83-2; DNP-NH-N=C(CH₂CH₂CO₂H)CO₂H, 1237-47-4;** $N=C(\Pr{i}C_2H, 6064-65-9; DNP-NH-N=C(Bu\text{-}sec)CO_2H,$ DNP-NH-N=C(Ph)C02H, **31334-72-2;** Fremy's salt, **14293-70-0;** oxidase, **9035-73-8; (2,4-dinitrophenyl)hydrazine, 119-26-6.**

An Investigation of the Mode of Formation of the 10-P-5 Protonated Phosphatrane $HP(OCH_2CH_2)_3N^+$

L. E. Carpenter, 11, and J. G. Verkade*

Gilman Hall, Iowa State University, Ames, Iowa 50011

Received June 16, 1986

In 1977 it was reported that the unstable phosphite ester amine 1 reacted with $Me₃O⁺$ and $Ph₃C⁺$ to give the first 10-P-5 cations **2** and **3,** respective1y.l Cation **2 (1-**

hydro-2,8,9-trioxa-l-phospha-5-azatricyclor[3.3.3.0lundecane) was shown to possess a TBP structure by X-ray crystallographic means.2 In contrast to the novel **10-P-5** TBP species such **as 4-10** which have been reported from

our laboratories recently, **2** and **3** feature the relatively nonapicophilic proton and triphenylmethyl group, respectively, in the apical position. It is also curious that the hydridephosphorane cation **2** is the only nonpolyneric product isolated from the reaction of 1 with $Me₃OBF₄$ (Scheme I) rather than the methyl analogue. In contrast, **3** was reported to form in the analogous reaction with Ph_3CBF_4 .¹ Here we show that the unreacted triethanolamine is the source of the protons in the reaction involving Me30BF,. Moreover, we now find that **2** as well as **3** can be formed in the reaction of 1 with Ph_3CBF_4 (Scheme I).

⁽²³⁾ Perrin, D. D.; Dempsey, B. *Buffers for pH and Metal Zon Control,* **Chapman and Hall Laboratory Manual: London, 1974.**

⁽¹⁾ Milbrath, D. S.; Verkade, J. *G.* **J.** *Am. Chem. SOC.* **1977,99,6607 and references therein.**

⁽²⁾ Clardy, J. **C.; Milbrath, D.** S.; **Springer, J. P.; Verkade,** J. **G.** *J. Am. Chem.* **Soc. 1976 98,623.**

⁽³⁾ Carpenter, L. E.; Verkade, J. **G.** *J. Am. Chem. SOC.* **1985,107,7084. (4) Carpenter, L. E.; de Ruiter, B.; van Aken, D.; Buck,** H. **M.; Ver-**

⁽⁵⁾ van Aken, D.; Merkelbach, I. I.; Koster, A. S.; **Buck,** H. **M.** *J.* **kade,** J. **G. J.** *Am. Chem. SOC.,* **in press.** *Chem. SOC., Chem. Commun.* **1980, 1045.**